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SUMMARY

Many pathogenic bacteria utilize the 2-C-methyl-D-
erythritol 4-phosphate (MEP) pathway for the biosyn-
thesis of isopentenyl diphosphate and dimethylallyl
diphosphate, two major building blocks of isoprenoid
compounds. The fifth enzyme in the MEP pathway,
2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-
CPP) synthase (IspF), catalyzes the conversion of
4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phos-
phate (CDP-ME2P) to ME-CPP with a correspond-
ing release of cytidine 5-monophosphate (CMP).
Because there is no ortholog of IspF in human cells,
IspF is of interest as a potential drug target. However,
study of IspF has been hindered by a lack of enantio-
pure CDP-ME2P. Herein, we report the first, to our
knowledge, synthesis of enantiomerically pure CDP-
ME2P from commercially available D-arabinose.
Cloned, expressed, and purified M. tuberculosis IspF
was able to utilize the synthetic CDP-ME2P as a
substrate, a result confirmed by mass spectrometry.
A convenient, sensitive, in vitro IspF assay was devel-
oped by coupling the CMP released during produc-
tion of ME-CPP to mononucleotide kinase, which
can be used for high throughput screening.

INTRODUCTION

Mycobacterium tuberculosis is the etiological agent of tuber-
culosis (TB), and, as of 2007, roughly one third of the world’s
population was infected with tubercle bacilli (World Health
Organization, 2007). This and the fact that both multidrug-resis-
tant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB)
are rapidly spreading (Zhao et al., 2009) have renewed the
urgency for the development of new treatments for this disease.
Here, we report continued efforts to characterize and identify
inhibitors of isoprenoid biosynthesis in pathogenic bacteria.
Isoprenoid compounds, such as polyprenols, polyprenyl phos-
phates, carotenoids, sterols, monoterpenes, sesquiterpenes,
and lipoquinones, are found in all living organisms (Edwards and
Ericsson, 1999), and a number of isoprenoid compounds are

found in mycobacteria that are essential for bacterial survival
(Brennan and Crick, 2007). To date, two different biosynthetic
pathways are known to lead to the synthesis of isopentenyl
diphosphate (IPP) and its isomer dimethylallyl diphosphate
(DMAPP), which are universal precursors of isoprenoids (Rohmer,
1999; Brennan and Crick, 2007). The mevalonate pathway
(Buhaescu and lzzedine, 2007), which was first identified in
mammals, and the non-mevalonate, or methylerythritol phos-
phate (MEP), pathway are found in plants (the MEP pathway in
plantsis constricted to the chloroplasts), apicomplexan protozoa,
and many eubacteria, including human pathogens such as
M. tuberculosis, Escherichia coli, Streptococcus pneumoniae,
Pseudomonas aeruginosa, Campylobacter jejuni, Salmonella
enterica Serovar Typhi, Mycobacterium leprae, Staphylococcus
aureus, and Plasmodium falciparum (Rohmer, 1999; Skorupin-
ska-Tudek et al., 2008; Rohmer, 2007; Eoh et al., 2008).

In the MEP biosynthetic pathway (Figure 1), 1-deoxy-D-xylu-
lose 5-phosphate 3 (Dxp) is made by condensing pyruvate 1
and glyceraldehyde 3-phosphate 2 catalyzed by Dxp synthase
(Dxs). Subsequently, 3 undergoes intramolecular rearrangement
and reduction by Dxp reductoisomerase (IspC) enzyme to
synthesize 4. 4 is coupled with cytidine triphosphate (CTP) using
MEP cytidyltransferase (IspD) to synthesize 5 as the major
product. 5 is subsequently phosphorylated by CDP-ME kinase
(IspE) at the 2-hydroxyl position to form 4-diphosphocytidyl-2-
C-methyl-D-erythritol-2-phosphate 6 (CDP-ME2P), which is
cyclized by ME-CPP synthase (IspF) (Buetow et al., 2007; Camp-
bell and Brown, 2002; Fellermeier et al., 2001; Rohdich et al.,
2001; Steinbacher et al., 2002; Ramsden et al., 2009; Richard
et al., 2002; Lehmann et al., 2002) to form 2-C-methyl-D-erythri-
tol 2, 4-cyclodiphosphate 7 (ME-CPP). The cyclic diphosphate
undergoes reductive elimination to form 1-hydroxy-2-methyl-2-
E-butenyl 4-diphosphate 8 (HMBPP), a reaction catalyzed by
IspG, and IspH (LytB) is utilized subsequently to generate IPP
9 and DMAPP 10.

Because the MEP pathway is not found in human cells, it is
generally considered to be a source of good targets for the
development of antimicrobials (lllarionova et al., 2006), antima-
larials (Giessmann et al., 2008), and herbicidal agents (Ershov,
2007), a hypothesis being explored by many researchers.
However, a major difficulty faced by researchers in this area is
the lack of availability of pure substrates. Access to MEP
pathway intermediates and their analogs is essential to ongoing
biochemical investigations and development of new antibiotics
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Figure 1. MEP Biosynthetic Pathway

targeting the respective enzymes. Recently, we reported the
synthesis of CDP-ME (Narayanasamy et al., 2008) and ME-CPP
(Narayanasamy and Crick, 2008) and kinetic studies of myco-
bacterial Dxs (Bailey et al., 2002), IspC (Dhiman et al., 2005),
IspD (Eoh et al., 2007), and IspE (Narayanasamy et al., 2008).
To extend our research to include IspF, we needed compound
6; however, the previously reported enzymatic synthesis of 6 is
tedious and expensive and leads to low yields (lllarionova
et al., 2006; Herz et al., 2000; Luttgen et al., 2000). Here, we
report the first, to our knowledge, chemical synthesis of enantio-
merically pure 6 and its use as a substrate to initiate studies of
IspF.

RESULTS AND DISCUSSION

Interestingly, although reported for the synthesis of 4 and 5, there
is no procedure for synthesis of enantiomerically pure 16, 21, or
6 from commercially available D-arabinose. To initiate the reac-
tions leading to 6, we extended the studies on the synthesis of
methylerythritol described in the literature (Urbansky et al.,
2004). Thus, the tertiary hydroxyl group of 13 is phosphorylated
by PCl; followed by benzylation using benzyl alcohol to yield
dibenzyl phosphite and subsequent oxidation to dibenzyl phos-
phate, 19, using a hydrogen peroxide solution. The TBS group in
19 is deprotected by triethylamine hydrofluoride in good yield,
and the primary hydroxyl group of 20 is phosphorylated using
dimethyl phosphochloridate in a n-BuLi solution. The methyl
in the dimethyl phosphate 21 is deprotected using TMSI, as re-
ported elsewhere (Zygmunt et al., 1978) before coupling to give
22 in stable form. We assumed that the benzyl protected meth-
ylerythritol 22 could be efficiently coupled with cytidine mono-
phosphate (CMP) to give the final product 23; unfortunately,
this reaction only afforded an 8% yield of 23, presumably as

a result of high stearic hindrance. Hydrogenolysis of 23 using
20% Pd(OH),/C yielded pure 6, but the overall yield for this route
to 6 is unacceptably low. Therefore, an alternate route was
developed. Initially, an attempt was made to use dibenzyl phos-
phochloridate in pyridine to selectively protect the primary
hydroxyl of 14, but that reaction was unsuccessful, so 14 was
activated with n-BuLi at low temperature and then reacted with
freshly prepared dibenzyl phosphochloridate to yield 15. The
free tertiary hydroxyl group was phosphorylated using PCls at
low temperature, followed with ethanol to give diethyl phosphite,
which was subsequently oxidized to diethyl phosphate, 16, in
good vyield (Figure 2). Subsequently, the benzyl deprotection was
performed by hydrogenolysis in one step using 20% Pd(OH),/C
in the presence of hydrogen to yield 17.

Cytidine monophosphate was titrated with triethylamine,
leading to the formation of the corresponding triethylammonium
cytidine 5'-monophosphate. The phosphoester moiety was acti-
vated by triflouroacetyl anhydride followed by conversion to
phosphoramide by treatment with methylimidazole and then
coupling with the tributylammonium salt of 17; this reaction was
completed in 4 hr and quenched with 1 M aqueous NH4HCO3.
The crude material was purified by passing through a benzyl-
DEAE cellulose column using a gradient of 10-500 mM aqueous
NH4HCO3, and fractions containing the product, 18, were
collected and lyophilized giving 40% yield. Examination of 18
was done by 'H-NMR, "*C-NMR, 3'P-NMR, and MS (see Supple-
mental Information available online). The phosphate moiety of 18
was deprotected using TMSI, as reported in literature, and purifi-
cation by column chromatography on Whatman fibrous cellulose
using 2-propanol, methanol, and water (in a ratio of 4:2:4) solution
(larionova et al., 2006) gave an 84% yield of 6. Because the
deprotected 6 is not stable, it was subjected to analysis by MS
and used immediately for the kinetic study of IspF. The nature
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Figure 2. Enantiomeric Synthesis of 6

and structure of product 6 was confirmed by MS, 'H-NMR, 3'P-
NMR (see Supplemental Information), and utilization by pure
recombinant enzyme.

An amino acid sequence alignment of Rv3581c with E. coli
IspF (Herz et al., 2000) showed 40% overall similarity and sug-
gested that Rv3581c is the M. tuberculosis ortholog of IspF
(Figure 3A). Rv3581c is 480 bp in length, encoding a polypeptide
of 159 amino acids with a molecular weight of 17.7 kDa, which is
predicted to be cytosolic (Sgraja et al., 2008). M. tuberculosis
IspF expression in the heterologous host, E. coli, was confirmed
by western blot analysis using an anti—His antibody (Figure 3B)
and purified by immobilized metal affinity chromatography. Inter-
estingly, all purification steps require the inclusion of 1 mM Zn?*
in order to maintain activity (see Supplemental Information).

Initially, a radioisotope-based assay was utilized to confirm the
activity of the recombinant protein. When synthesized CDP-ME
and [y-*2P]ATP were incubated in presence of IspE, TLC analysis
of the reaction mixture clearly showed the formation of a product
with the reported chromatographic properties of CDP-ME2P
(Figure 4 lane 2). The addition of M. tuberculosis IspF to the
mixture resulted in the formation of a new product that had chro-

matographic properties on TLC and mass spectral data similar
to those previously reported for ME-CPP generated by an assay
in which IspE and IspF were coupled (Testa et al., 2006) (Fig-
ure 4, lane 3). In addition, crude reaction mixtures containing
enantiomerically pure CDP-ME2P and M. tuberculosis IspF were
analyzed by mass spectrometry in the absence of CDP-ME and
IspE. In these assays, a decrease in the CDP-ME2P molecular
ion and the appearance of a molecular ion corresponding to
ME-CPP (Narayanasamy and Crick, 2008; Urbansky et al., 2004)
was observed (data not shown). Although this protocol confirmed
the formation of product, it is cumbersome for the analysis of
multiple samples.

In general, IspF catalyzes an unusual cyclization reaction
producing ME-CPP and releasing CMP (Herz et al., 2000); in
previous reports, analysis of IspF assay products was based
on TLC or HPLC (Herz et al., 2000; Rohdich et al., 2001), which
is not suitable for high throughput screening. To develop a
more convenient assay, which is applicable to high throughput
screening and to determine kinetic properties of M. tuberculosis
IspF, CMP generation was coupled to nucleotide monophos-
phate kinase (NMK) and the ADP Quest HS Kinase Assay Kit
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Figure 3. Partial Alignment, Purification, and Characterization of IspF

(A) Partial alignment of putative M. tuberculosis (MTB) IspF and E. coli (ECO) Is|
Conserved amino acids reported to be involved in substrate specificity (#) and

pF. Identities are indicated in black boxes, and similarities are indicated in gray.
the Zn?* binding (*) are indicated.

(B) Expression and purification of His-tagged M. tuberculosis IspF. SDS-PAGE and western blot analysis of protein fractions from E. coli transformed with
pET28a(+)::Rv3581c. Lane 1, cell lysate prior to IPTG induction. Lane 2, cell lysate after IPTG treatment. Lane 3, purified His-tagged IspF visualized by Coomassie

Brilliant Blue 250R. Lane 4, western blot analysis of purified IspF using an anti-

(C) The effect of CDP-ME2P concentration on M. tuberculosis IspF activity. Reac!
this reaction was detected using ADP Quest HS Kinase kit and a Synergy™ HT
emission wavelength of 590 nm.

(GE Healthcare, UK) to monitor ADP formation (Figure S1). The
activity of pure recombinant IspF was linear with increasing
protein concentration up to 281.5 pmol and reaction time up to
30 min. The coupled assay showed classic saturation kinetics
with increasing concentration of CDP-ME2P (Figure 3C). From
these data, the K,,°°"M2F and V., values of 81.1 uM and
81.6 nmolS~", respectively, were calculated. The constants
keat @and keq/Kp, for M. tuberculosis IspF were calculated to be
7.3x107°S "and 5.4 x 107* uM~"min~", respectively.

SIGNIFICANCE

We successfully synthesized enantiopure 6 by two routes.
Although this compound was unstable under usual storage
conditions, the derivative 18 can be stored at —20°C and
easily deprotected to form 6. In the synthetic scheme of 6
reported here, radiolabeling also can be easily introduced
during the methylation, reduction, and coupling steps, if
required. To determine the kinetic properties of M. tubercu-
losis IspF using 6, the enzyme was identified bioinformati-
cally, overexpressed, purified in the presence of 1 mM

His antibody.
tion mixtures are described in the Experimental Procedures. ADP generated from
Multi-Detection Microplate Reader with an excitation wavelength of 520 nm and

Zn?*, and utilized to develop a spectrophotometry-based
in vitro assay. This assay was used to generate the first
kinetic characterization of an IspF enzyme and, importantly,
it can be used for high throughput screening to identify
IspF inhibitors. We also observed that the k.,;/K,, value 5.4 x
10~* uM 'min~' of M. tuberculosis IspF was much lower
than that reported for M. tuberculosis IspD and IspE (Eoh
et al., 2007), suggesting that the catalytic efficiency of IspF
is lower than the preceding two steps on the biosynthetic
pathway.

EXPERIMENTAL PROCEDURES

M. tuberculosis Hz7Rv strain genomic DNA was provided by Dr. John T. Belisle
of Colorado State University (NIH/NIAID Contract NO1-Al-75320, “Tubercu-
losis Research Material and Vaccine Testing”). All PCR reagents and cloning
materials were purchased from QIAGEN (Valencia, CA). His-select nickel
affinity resin, ATP, and reagents were obtained from Sigma-Aldrich (St. Louis,
MO). Nucleotide monophosphate kinase (NMK) and phosphorylase inhibitor
were purchased from Roche. The ADP Quest HS Kinase Assay Kit was
purchased from GE Healthcare Bio-Sciences Corp. (UK). All other reagents
and solvents were of at least analytical grade. [y->2PJATP (6000 Ci/mmol)
was purchased from Amersham Biosciences (Pittsburgh, PA).
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Figure 4. Determination of Activity of Recombinant M. tuberculosis
IspF

Three different reaction mixtures containing the indicated compounds were
analyzed. The arrows indicate the migration of authentic compounds.

Procedure for Synthesis of 16

To alcohol 15 (0.275 mmol) in decm (6 mL), pyridine (0.91 mmol) was added at
—13°C, followed by addition of phosphorus trichloride (0.28 mmol). After 2 hr of
stirring at 13°C, completion of reaction was checked by TLC, and then dry
ethanol (0.605 mmol) was added at 13°C and stirred at 16°C for 2 hr. After
the completion of the reaction, it was cooled to 0°C, and hydrogen peroxide
(0.99 mmol) solution was added. The reaction mixture was stirred at room
temperature for 4 hr and then diluted with dichloromethane. Subsequently,
the organic phase was washed with 10% sodium metabisulfite solution, dilute
HCI, and brine solution. The organic phase was dried with MgSO,, solvents
were evaporated at reduced pressure, and the crude mixture was purified
by flash column chromatography using 80:20 (EtOAc: hexane) as eluent and
gave a 68% vyield of 16.

Procedure for Synthesis of 18

To CMP (0.05 mmol) in acetonitrile (0.5 mL), N, N, dimethyl aniline (0.21 mmol)
and triethylamine (0.05 mmol) were added consequently at 0°C. Trifluoroacetic
anhydride (0.26 mmol) in acetonitrile was added slowly to the above mixture
and stirred for 15 min. Excess TFA and anhydride was removed under reduced
pressure. Then 1-methyl imidazole (0.15 mmol) and triethylamine (0.26 mmol)
in acetonitrile was slowly added and the mixture was stirred for 30 more
minutes. The activated CMP obtained was added to 0.04 mmol of 17 and acti-
vated 4 A° molecular sieves in acetonitrile at 0°C and stirred for 4h. The mixture
was then extracted with chloroform, and the aqueous layer was lyophilized.
The dried compound was dissolved in 100 mM aqueous ammonium bicar-
bonate and purified through Bio-Gel® P-2 gel fine column using 100 mM
aqueous ammonium bicarbonate followed by further purification on a benzyl
DEAE cellulose anion exchange column, eluted by a gradient of 0-0.5 M
aqueous ammonium bicarbonate, leading to a 40% vyield of 18 as the major
product.

In Vitro Radiochemical IspF Assay

IspF assays were performed in reaction mixtures containing 50 mM Tris-Cl
(pH 7.0), 100 uM [y-*2PJATP (10 dpm/nmol), 2 mM DTT, 100 uM CDP-ME,
5 mM MgCl,, 97.2 pmol M. tuberculosis IspE, and 112.6 pmol M. tuberculosis
IspF in a 50 pl final reaction volume. Reactions were initiated by addition of
purified M. tuberculosis IspF, incubated at 37°C for 30 min, and terminated
by the addition of 10 mM of EDTA (pH 8.0). TLC analysis was performed by
transferring 10 pl of the reaction mixture to a TLC plate (Polygam Sil N-HR,
Macherey and Nagel) and developing with n-propanol/ethyl acetate/H,O
(6:1:3, v/v/v). Distribution of the radioactivity on the TLC plates was analyzed
using a Molecular Dynamics Typhoon 8600 Phosphoimager.

MS-Based In Vitro IspF Assay

The IspF activity was also assessed by monitoring ME-CPP formation by MS.
Reaction mixture contained 50 mM MOPS (pH 8.0), 5 mM MgCl,, 100 uM
CDP-ME2P, and 1 mM phosphatase inhibitor, in a final volume of 50 pl. In all
cases, the reactions were started by the addition of 112.6 pmol purified
IspF, incubated at 37°C for 30 min, and terminated by the addition of 10 mM
EDTA. The reaction mixture was completely dried, dissolved in methanol/
H>O (1:1), and analyzed on an Agilent 6210 mass spectrometer.

Spectrophotometry-Based In Vitro IspF Assay

The IspF activity was assessed by monitoring CMP release, which was
coupled to NMK to generate ADP (Figure S2). The ADP Quest HS Kinase Assay
Kit was used to detect ADP formation. Reactions were performed in 96-well
black microplates with clear bottoms (Costar, Bethesda, MD); each reaction
mixture contained 50 mM MOPS (pH 8.0), 5 mM MgCl,, 100 pM CDP-
ME2P, 1 mM phosphatase inhibitor, 0.05 U of NMK, and 200 uM ATP in a final
volume of 50 pl. In all cases, the reactions were started by the addition of 112.6
pmol of purified IspF, incubated at 37°C for 30 min and terminated by the addi-
tion of 10 mM EDTA. Subsequently, 25 pl of reagent A and 50 pl of reagent B of
the ADP Quest HS Kinase Assay Kit were added and incubated at room
temperature for 15 min. Fluorescence was measured by Synergy™ HT Multi-
Detection Microplate Reader (BioTek Instruments, Inc. Winooski, VT) with an
excitation wavelength of 530 nm and emission wavelength of 590 nm.

Kinetic Characterization of Rv3581c

The effect of CDP-ME2P concentrations on reaction rates was determined
by adding various concentrations of the compound to the reactions. Results
presented are the average of duplicate experiments. The K,,, and V., values
of substrates for the enzyme were calculated by nonlinear regression analysis
using SigmaPlot V.8.02A.

SUPPLEMENTAL INFORMATION

Supplemental Information contains one figure and Supplemental Experimental
Procedures and may be found with this article online at doi:10.1016/
j.chembiol.2010.01.013.
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